3,710 research outputs found

    Temperature dependent core-level photoemission study of UNiSn

    Get PDF
    UNiSn undergoes an anomalous phase transition at T-N = 47 K, at which temperature it transforms from an antiferromagnetic metal to a paramagnetic semiconductor with an energy gap similar or equal to 70 meV. In order to investigate how the electronic structure of UNiSn changes as it crosses the transition temperature, we have used the X ray photoemission spectroscopy (XPS) technique from 20 to 70 K. According to the XPS studies, the U 4f core levels are almost temperature independent while the Ni 2p core levels and the satellite structure display a weak anomaly at T-N

    Biologic stability of plasma ion-implanted miniscrews

    Get PDF
    published_or_final_versio

    Structure and dielectric properties of cubic Bi<inf>2</inf>(Zn <inf>1/3</inf>Ta<inf>2/3</inf>)<inf>2</inf> O<inf>7</inf> thin films

    Get PDF
    Pyrochlore Bi2(Zn1/3Ta2/3)2 O7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [ε∼177, temperature coefficient of capacitance (TCC) ∼-170 ppm/°C] are much different from those of monoclinic BZT ceramics (ε∼61, TCC ∼+60 ppm/°C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. © 2009 American Institute of Physics

    Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives

    Get PDF
    Spin-coating has been used extensively in the fabrication of electronic devices; however, the effects of the processing parameters have not been fully explored. Here, we systematically characterize the effects of the spin-coating time on the microstructure evolution during semiconducting polymer solidification in an effort to establish the relationship between this parameter and the performances of the resulting polymer field-effect transistors (FETs). We found that a short spin-coating time of a few seconds dramatically improve the morphology and molecular order in a conjugated polymer thin film because the p-p stacking structures formed by the polymer molecules grow slowly and with a greater degree of order due to the residual solvent present in the wet film. The improved ordering is correlated with improved charge carrier transport in the FETs prepared from these films. We also demonstrated the effects of various processing additives on the resulting FET characteristics as well as on the film drying behavior during spin-coating. The physical properties of the additives are found to affect the film drying process and the resulting device performance.113427Ysciescopu

    Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor

    Get PDF
    We developed step edge decoration method for the fabrication of semiconductor ZnO nanodots and nanowires using pulsed laser deposition. We synthesized high quality ZnO nanowires with the small diameter of about 20 nm and the uniform interval of about 80 nm between each nanowire, which has a simple structure for the formation of contact electrodes. The ZnO nanowire-based sensor was prepared only with the simple process of a gold electrode formation. The ZnO nanowire-based sensor exhibited the high surface-to-volume ratio of 58.6 mu m(-1) and the significantly high sensitivity of about 10 even for the low ethanol concentration of 0.2 ppm.open115860sciescopu

    Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films

    Get PDF
    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01× 10-4 Ω cm. However, after annealing at 450 °C in air, the electrical resistivity of the AZO films increased to 1.97× 10-1 Ω cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H2 recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H2 annealing. A photoluminescence study showed that oxygen interstitial (Oi′) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films. © 2008 American Institute of Physics

    Linear and Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPARX Cipher

    Get PDF
    We propose a new cryptanalytic technique and key recovery attack for the Sparx cipher, Partly-Pseudo-Linear Cryptanalysis, a meet-in-the-middle attack combining linear and pseudo-linear approximations. We observe improvements over the linear hull attacks in the literature for Sparx 128/128 and 128/256. Additionally, we generate another attack for comparison purposes, using the Cho-Pieprzyk property for a fully-linear approximation and a corresponding key recovery attack. We observe improvements on the data complexity, bias, and number of recovered key bits, over all variants of Sparx, when compared to the use of only the Cho-Pieprzyk approximation

    Functional features of an ssi signal of plasmid pGKV21 in Escherichia coli

    Get PDF
    A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13??lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.open5

    Oxygen-Vacancy-Induced Orbital Reconstruction of Ti Ions at the Interface of LaAlO3/SrTiO3 Heterostructures: A Resonant Soft-X-Ray Scattering Study

    Get PDF
    Resonant soft-x-ray scattering measurements have been performed to investigate interface electronic structures of (LaAlO3/SrTiO3) superlattices. Resonant scattering intensities at superlattice reflections show clear evidence of degeneracy lifting in t(2g) states of interface Ti ions. Polarization dependence of intensities indicates the energy of d(xy) states is lower by similar to 1 eV than two other t(2g) states. The energy splitting is insensitive to epitaxial strain. The orbital reconstruction is induced by oxygen vacancies and confined to the interface within two unit cells, indicating charge compensation at the polar interfaces. DOI: 10.1103/PhysRevLett.110.017401X112723Nsciescopu

    Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    Get PDF
    Highly (hhh) -oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh) -oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect. © 2007 American Institute of Physics
    corecore